Cho đường tròn (O; R), từ một điểm A trên (O) kẻ tiếp tuyến d với (O). Trên đường thẳng d lấy điểm M bất kì (M khác A), kẻ cát tuyến MNP và gọi K là trung điểm của NP, kẻ tiếp tuyến MB (B là tiếp điểm). Kẻ AC ⊥ MB, BD ⊥ MA. Gọi H là giao điểm của AC và BD, I là giao điểm của OM và AB.
1) Chứng minh tứ giác AMBO nội tiếp.
2) Chứng minh năm điểm O, K, A, M, B cùng nằm trên một đường tròn.
3) Chứng minh OI.OM = R2; OI.IM = IA2.
4) Chứng minh OAHB là hình thoi.
5) Chứng minh ba điểm O, H, M thẳng hàng.
6) Tìm quỹ tích của điểm H khi M di chuyển trên đường thẳng d.