Cho đường tròn tâm O có đường kính AB = 2R. Từ trung điểm H của đoạn OB, kẻ đường thẳng vuông góc với AB cắt đường tròn (O) tại C và D.
a) Chứng minh HC = HD và tứ giác ODBC là hình thoi.
b) Tính số đo của \[\widehat {BOC}\].
c) Gọi M là điểm đối xứng của O qua B. Chứng minh MC là tiếp tuyến tại C của đường tròn (O). Tính MC theo R.
d) Qua O kẻ đường thẳng vuông góc với OC cắt CD ở I. Chứng minh HI.HD + HB.HM = R2.