Cho đường tròn (O) có hai đường kính AB và MN vuông góc với nhau. Trên tia đối của tia MA lấy điểm C khác điểm M. Kẻ MH vuông góc với BC (H thuộc BC).
a) Chứng minh BOMH là tứ giác nội tiếp.
b) MB cắt OH tại E. Chứng minh ME.MH = BE.HC.
c) Gọi giao điểm của đường tròn (O) với đường tròn ngoại tiếp ∆MHC là K. Chứng minh 3 điểm C, K, E thẳng hàng.