Hàm chi phí và hàm doanh thu (đều tính bằng triệu đồng) của một loại sản phẩm lần lượt là C(x) = 25,5x + 1 000 và R(x) = 75,5x, trong đó x là số đơn vị sản phẩm đó được sản xuất và bán ra.
a) Tính hàm lợi nhuận trung bình \(\overline P (x) = \frac{{R(x) - C(x)}}{x}\).
b) Tìm lợi nhuận trung bình khi mức sản xuất x lần lượt là 100, 500 và 1 000 đơn vị sản phẩm.
c) Xét tính đơn điệu của hàm lợi nhuận trung bình \(\overline P (x)\) trên khoảng (0; +∞) và tính giới hạn của hàm số này khi x → +∞. Giải thích ý nghĩa thực tiễn của kết quả nhận được.