Cho đường tròn tâm O bán kính R và một đường thẳng d cố định không giao nhau. Hạ OH vuông góc với d. M là một điểm tùy ý trên d (M không trùng với H). Từ M kẻ hai tiếp tuyến MP và MQ với đường tròn (O; R) (P, Q là các tiếp điểm và tia MQ nằm giữa hai tia MH và MO). Dây cung PQ cắt OH và OM lần lượt tại I và K.
1) Chứng minh rằng tứ giác OMHQ nội tiếp.
2) Chứng minh rằng \[\widehat {OMH} = \widehat {OIP}\]
3) Chứng minh rằng khi M di chuyển trên đường thẳng d thì điểm I luôn cố định.
4) Biết \[OH = R\sqrt 2 \], tính IP . IQ.