Phạm Văn Phú | Chat Online
13/09 23:31:26

Cho 3 điểm \(A,B,C\)cố định và thẳng hàng theo thứ tự đó. Một đường tròn \(\left( O \right)\)thay đổi nhưng luôn đi qua B và C sao cho \(B,O,C\)không thẳng hàng. Từ A vẽ hai tiếp tuyến \(AM,AN\)với đường tròn \(\left( O \right)\left( {M,N \in \left( O \right)} \right.\)sao cho N thuộc cung nhỏ \(\left. {BC} \right)\) 1) Chứng minh tứ giác \(AMON\)là tứ giác nội tiếp 2) Chứng minh \(AB.AC = A{N^2}\) 3) Gọi \(D\)là trung điểm của \(BC,\)đường thẳng \(ND\)cắt \(\left( O \right)\)tại điểm ...


Cho 3 điểm \(A,B,C\)cố định và thẳng hàng theo thứ tự đó. Một đường tròn \(\left( O \right)\)thay đổi nhưng luôn đi qua B và C sao cho \(B,O,C\)không thẳng hàng. Từ A vẽ hai tiếp tuyến \(AM,AN\)với đường tròn \(\left( O \right)\left( {M,N \in \left( O \right)} \right.\)sao cho N thuộc cung nhỏ \(\left. {BC} \right)\)

1) Chứng minh tứ giác \(AMON\)là tứ giác nội tiếp

2) Chứng minh \(AB.AC = A{N^2}\)

3) Gọi \(D\)là trung điểm của \(BC,\)đường thẳng \(ND\)cắt \(\left( O \right)\)tại điểm thứ hai \(E.\)Chứng minh \(ME//AC\)

4) Gọi \(G,H\)theo thứ tự là giao điểm của \(AC,AO.\)Chứng minh \(MN\)luôn đi qua một điểm cố định và tâm đường tròn ngoại tiếp \(\Delta OHG\)luôn nằm trên một đường thẳng cố định.

Bài tập đã có 1 trả lời, xem 1 trả lời ... | Chính sách thưởng | Quy chế giải bài tập
Không chấp nhận lời giải copy từ Trợ lý ảo / ChatGPT. Phát hiện 1 câu cũng sẽ bị xóa tài khoản và không được thưởng
Đăng ký tài khoản để nhận Giải thưởng khi trả lời bài tập.
Đăng ký tài khoản để có thể trả lời bài tập này!

Đăng ký qua Facebook hoặc Google:

Hoặc lựa chọn:
Đăng ký bằng email, điện thoại Đăng nhập bằng email, điện thoại
Lazi.vn