Khánh Nguyễn | Chat Online
15/09 11:19:03

Cho tam giác ABC có hai đường cao BB' và CC'. Gọi O là trung điểm của BC. Chứng minh đường tròn tâm O bán kính OB' đi qua B, C, C'


----- Nội dung ảnh -----
**Bài 10:** Cho tam giác \( ABC \) có hai đường cao \( BB' \) và \( CC' \). Gọi \( O \) là trung điểm của \( BC \). Chứng minh đường tròn tâm O bán kính \( OB' \) đi qua \( B, C, C' \).

**Bài 11:** Cho tứ giác \( ABCD \) có \( B = D = 90^\circ \). Chứng minh bốn điểm \( A, B, C, D \) cùng nằm.

**Bài 12:** Cho hai đường tròn cùng tâm \( (O; R), (O;r) \) với \( R > r \). Các điểm \( A, B \) thuộc đường tròn \( (O; R) \) sao cho \( O, A, A' \) thẳng hàng; \( O, B, B' \) thẳng hàng và điểm \( O \) không thuộc đường thẳng \( AB \). Chứng minh:
a) \( \frac{OA'}{OA} = \frac{OB'}{OB} \)
b) \( AB \parallel A'B' \).

**Bài 13:** Cho đường tròn \( (O) \), đường thẳng \( d \) đi qua \( O \) và điểm \( A \) thuộc \( (O) \) nhưng không thuộc \( d \). Gọi \( B \) là điểm đối xứng với \( A \) qua \( d \); \( C \) và \( D \) lần lượt là điểm đối xứng của \( A \) và \( B \) qua \( O \).
a) Ba điểm \( B, C \) và \( D \) có thuộc \( (O) \) không? Vì sao?
b) Chứng minh tứ giác \( ABCD \) là hình chữ nhật.
c) Chứng minh rằng \( C \) và \( D \) đối xứng về nhau qua đường chéo.

**Bài 14:** Cho hình vuông \( ABCD \) có \( E \) liên giáo điểm của hai đường chéo.
a) Chứng minh rằng \( E \) là trung điểm của \( AB, C \) và \( D \). Xác định tâm đối xứng về chỉ.
Bài tập đã có 1 trả lời, xem 1 trả lời ... | Chính sách thưởng | Quy chế giải bài tập
Không chấp nhận lời giải copy từ Trợ lý ảo / ChatGPT. Phát hiện 1 câu cũng sẽ bị xóa tài khoản và không được thưởng
Đăng ký tài khoản để nhận Giải thưởng khi trả lời bài tập.
Đăng ký tài khoản để có thể trả lời bài tập này!

Đăng ký qua Facebook hoặc Google:

Hoặc lựa chọn:
Đăng ký bằng email, điện thoại Đăng nhập bằng email, điện thoại
Lazi.vn