Chứng minh bất đẳng thức
----- Nội dung ảnh -----
1 cũm 1
\(\frac{1}{4} + \frac{1}{5} + \frac{2}{5^2} + \frac{3}{5^3} \) 2016 < \(\frac{1}{3}\)
2 cũm b
\(\frac{36}{-1.3.5} + \frac{36}{3.5.7} \) < 3
\(\frac{7.35}{2.5.27.29}\)
3 cũm 3
\(\frac{3}{5} < \frac{1}{2004} + \frac{1}{2005} + \frac{1}{4006} + \frac{3}{4}\)
4 cũm A
\(A = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \) \(\rightarrow\) \(\frac{1}{2.2016} \)
5) A =
\(\frac{455}{1} + \frac{454}{2} + \frac{453}{3} + \ldots + \frac{2}{454} + \frac{1}{455}\)
Số tích phân 2017
6 cm V m ê N:
\(\frac{1}{2} + \frac{1}{4} + \ldots + \frac{1}{2^n}\)
\(\frac{1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{2^n}}{n \rightarrow \infty}\)