Cho hàm số \(y = \frac{{ - {x^2} + x + 1}}\) có đồ thị \(\left( C \right)\).
a) Hàm số đã cho nghịch biến trên các khoảng \(\left( { - \infty ; - 2} \right)\) và \(\left( {0; + \infty } \right)\).
b) Đồ thị \(\left( C \right)\) có hai điểm cực trị nằm ở hai phía đối với trục tung.
c) Đồ thị \(\left( C \right)\) có đường tiệm cận đứng là \(x = - 1\); đường tiệm cận xiên là \(y = - x + 2\).
d) Đồ thị \(\left( C \right)\) nhận điểm \(I\left( { - 1;3} \right)\) làm tâm đối xứng.