Cho hai tiếp tuyến MA và MB của đường tròn (O). Gọi N là điểm sao cho MANB là một hình bình hành.
a) Giả sử N không nằm trên (O), NA và NB cắt (O) lần lượt tại D và C.
– Chứng minh rằng ABC là tam giác cân tại đỉnh A.
– Chứng minh rằng hai cung BC và AD có số đo bằng nhau.
b) Giả sử N nằm trên (O).
– Chứng minh rằng MAB là tam giác đều.
– Tính độ dài cung AB và diện tích của hình quạt tròn ứng với cung AB, biết rằng đường tròn (O) có bán kính bằng 6 cm.