Cho tam giác nhọn ABC và điểm D nằm giữa B và C. Gọi E và F lần lượt là chân đường vuông góc hạ từ D xuống AB và AC.
a) Gọi I và J lần lượt là tâm đường tròn ngoại tiếp tam giác EBD và tam giác FDC. Chứng minh rằng hai đường tròn (I) và (J) tiếp xúc ngoài với nhau.
b) Giả sử M là một điểm tuỳ ý khác F, nằm giữa A và C; gọi K là tâm đường tròn ngoại tiếp tam giác MDC. Chứng minh rằng hai đường tròn (I) và (K) cắt nhau.