Bạch Tuyết | Chat Online
13/12 11:21:45

Cho hàm số \(y = \frac{{2{x^2} - 2x + 2}}{{ - x + 1}}\) có đồ thị \(\left( C \right)\). a) Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) ∪ \(\left( {2; + \infty } \right)\). b) Giá trị nhỏ nhất của hàm số trên đoạn \(\left[ {\frac{3}{2};\frac{5}{2}} \right]\) bằng \( - \frac{3}\). c) Đồ thị hàm số \(\left( C \right)\) có tiệm cận xiên là đường thẳng \(2x + y = 0\). d) Góc giữa hai đường tiệm cận của đồ thị hàm số bằng \(45^\circ \).


Cho hàm số \(y = \frac{{2{x^2} - 2x + 2}}{{ - x + 1}}\) có đồ thị \(\left( C \right)\).

a) Hàm số nghịch biến trên khoảng \(\left( { - \infty ;0} \right)\) ∪ \(\left( {2; + \infty } \right)\).

b) Giá trị nhỏ nhất của hàm số trên đoạn \(\left[ {\frac{3}{2};\frac{5}{2}} \right]\) bằng \( - \frac{3}\).

c) Đồ thị hàm số \(\left( C \right)\) có tiệm cận xiên là đường thẳng \(2x + y = 0\).

d) Góc giữa hai đường tiệm cận của đồ thị hàm số bằng \(45^\circ \).

Bài tập đã có 1 trả lời, xem 1 trả lời ... | Chính sách thưởng | Quy chế giải bài tập
Không chấp nhận lời giải copy từ Trợ lý ảo / ChatGPT. Phát hiện 1 câu cũng sẽ bị xóa tài khoản và không được thưởng
Đăng ký tài khoản để nhận Giải thưởng khi trả lời bài tập.
Đăng ký tài khoản để có thể trả lời bài tập này!

Đăng ký qua Facebook hoặc Google:

Hoặc lựa chọn:
Đăng ký bằng email, điện thoại Đăng nhập bằng email, điện thoại
Lazi.vn