Bạch Tuyết | Chat Online
13/12 11:21:50

Một con cá hồi bơi ngược dòng để vượt khoảng cách là \(100\;{\rm{km}}\). Vận tốc dòng nước là \(5\;\left( {{\rm{km/h}}} \right)\). Nếu vận tốc bơi của cá khi nước đứng yên là \(v\;\left( {{\rm{km/h}}} \right)\), \(\left( {v > 5} \right)\) thì năng lượng tiêu hao của cá trong \(t\) giờ được cho bởi công thức \(E\left( v \right) = c \cdot {v^3} \cdot t\), trong đó \(c\) là hằng số dương, \(E\) được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng \(\left( {a;b} \right)\) ...


Một con cá hồi bơi ngược dòng để vượt khoảng cách là \(100\;{\rm{km}}\). Vận tốc dòng nước là \(5\;\left( {{\rm{km/h}}} \right)\). Nếu vận tốc bơi của cá khi nước đứng yên là \(v\;\left( {{\rm{km/h}}} \right)\), \(\left( {v > 5} \right)\) thì năng lượng tiêu hao của cá trong \(t\) giờ được cho bởi công thức \(E\left( v \right) = c \cdot {v^3} \cdot t\), trong đó \(c\) là hằng số dương, \(E\) được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng \(\left( {a;b} \right)\) thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của \(b - a\) (kết quả làm tròn tới hàng phần mười).

Bài tập đã có 1 trả lời, xem 1 trả lời ... | Chính sách thưởng | Quy chế giải bài tập
Không chấp nhận lời giải copy từ Trợ lý ảo / ChatGPT. Phát hiện 1 câu cũng sẽ bị xóa tài khoản và không được thưởng
Đăng ký tài khoản để nhận Giải thưởng khi trả lời bài tập.
Đăng ký tài khoản để có thể trả lời bài tập này!

Đăng ký qua Facebook hoặc Google:

Hoặc lựa chọn:
Đăng ký bằng email, điện thoại Đăng nhập bằng email, điện thoại
Lazi.vn