Trong không gian với hệ tọa độ \(Oxyz\), cho điểm\(A\left( { - 1;4;2} \right)\) và mặt phẳng \(x + 2y + 2z = 1\).
a) Mặt phẳng \(x + 2y + 2z = 1\) có một vectơ pháp tuyến là \(\left( {1;2;2} \right)\).
b) Điểm \(A\left( { - 1;4;2} \right)\)không thuộc mặt phẳng \(x + 2y + 2z = 1\).
c) Điểm \(A\left( { - 1;4;2} \right)\) cách mặt phẳng \(\left( {Oyz} \right)\) một khoảng bằng 1.
d) Phương trình mặt phẳng \(\left( \alpha \right)\) đi qua \(A\) chứa trục \(Oy\) có dạng \(x + by + cz = 0\). Khi đó \(b - 2{c^2} + 1 > 0\).