Trong không gian tọa độ \(Oxyz\), cho mặt phẳng \(\left( P \right):x + y + z + 1 = 0\) và hai điểm \(A\left( {1; - 1;2} \right),B\left( {2;1;1} \right)\). Gọi \(\left( Q \right)\) là mặt phẳng chứa \(A,B\) và vuông góc với mặt phẳng \(\left( P \right)\).
a) Một vectơ pháp tuyến của mặt phẳng \(\left( Q \right)\) là \(\left( {3; - 2; - 1} \right)\).
b) Phương trình mặt phẳng \(\left( Q \right)\) là \(3x - 2y - z + 3 = 0\).
c) Điểm \(M\left( {3;1;2} \right)\) không thuộc mặt phẳng \(\left( Q \right)\).
d) Mặt phẳng \(\left( Q \right)\) song song với mặt phẳng \(\left( R \right):6x - 4y - 2z - 6 = 0\).