Trần Bảo Ngọc | Chat Online
07/01 14:19:54

Cho hàm số \(f\left( x \right)\) liên tục và không âm trên đoạn \(\left[ {0;3} \right]\). \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) trên đoạn \(\left[ {0;3} \right]\) thỏa mãn \(F\left( 3 \right) = 2\) và \(F\left( 0 \right) = 1\). a) Hiệu số \(F\left( 3 \right) - F\left( 0 \right)\) gọi là tích phân từ \(3\) đến \(0\) của hàm số \(f\left( x \right)\). b) \(\int\limits_0^3 {f\left( x \right){\rm{d}}x} = - \int\limits_3^0 {f\left( x \right){\rm{d}}x} = F\left( 3 \right) - ...


Cho hàm số \(f\left( x \right)\) liên tục và không âm trên đoạn \(\left[ {0;3} \right]\). \(F\left( x \right)\) là một nguyên hàm của \(f\left( x \right)\) trên đoạn \(\left[ {0;3} \right]\) thỏa mãn \(F\left( 3 \right) = 2\) và \(F\left( 0 \right) = 1\).

a) Hiệu số \(F\left( 3 \right) - F\left( 0 \right)\) gọi là tích phân từ \(3\) đến \(0\) của hàm số \(f\left( x \right)\).

b) \(\int\limits_0^3 {f\left( x \right){\rm{d}}x} = - \int\limits_3^0 {f\left( x \right){\rm{d}}x} = F\left( 3 \right) - F\left( 0 \right)\).

c) \(\int\limits_0^3 {f\left( t \right){\rm{dt}}} = 1\).

d) Hình thang cong giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = 0,x = 3\) có diện tích bằng 1.

Bài tập đã có 1 trả lời, xem 1 trả lời ... | Chính sách thưởng | Quy chế giải bài tập
Không chấp nhận lời giải copy từ Trợ lý ảo / ChatGPT. Phát hiện 1 câu cũng sẽ bị xóa tài khoản và không được thưởng
Đăng ký tài khoản để nhận Giải thưởng khi trả lời bài tập.
Đăng ký tài khoản để có thể trả lời bài tập này!

Đăng ký qua Facebook hoặc Google:

Hoặc lựa chọn:
Đăng ký bằng email, điện thoại Đăng nhập bằng email, điện thoại
Lazi.vn