Cho đường tròn (O). Từ điểm M ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB của (O) (với A, B là các tiếp điểm). Kẻ AH vuông góc với MB tại H. Đường thẳng AH cắt (O) tại N (khác A)
Cho đường tròn (O). Từ điểm M ở ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB của (O) (với A, B là các tiếp điểm). Kẻ AH vuông góc với MB tại H. Đường thẳng AH cắt (O) tại N (khác A). Đường tròn đường kính NA cắt các đường thẳng AB và MA theo thứ tự tại I và K. a) Chứng minh tứ giác NHBI là tứ giác nội tiếp. b) Chứng minh tam giác NHI đồng dạng với tam giác NIK. c) Gọi C là giao điểm của NB và HI, gọi D là giao điểm của NA và KI. Đường thẳng CD cắt MA tại E. Chứng minh CI = EA.