Cho hai đường tròn (O; R) và (O'; R') cắt nhau tại A và B (R > R'). Gọi M là trung điểm của OO'. Kẻ đường thẳng vuông góc với MA tại A, đường thẳng này cắt các đường tròn (O; R) và (O'; R') theo thứ tự tại C và D (khác A).
a) Chứng minh rằng AC = AD.
b) Lấy K sao cho M là trung điểm của AK. Chứng minh rằng KB vuông góc với AB.
c) Kẻ đường kính AE của đường tròn (O) và đường kính AF của (O'). Chứng minh rằng bốn điểm E, K, B, F thẳng hàng và OO' song song với EF.
d) Chứng minh K là trung điểm của EF.