Cho đoạn thẳng BC. Trên cùng một nửa mặt phẳng bờ là BC, vẽ các tia Bx, Cy cắt nhau tại A sao cho CBx = 2. BCy. Kẻ AH⊥BC. Trên tia đối của tia Bx, lấy E sao cho BE = BH. Gọi D là giao điểm của EH và AC. CMR: ∆HDC và ∆ADH cân. Trên cạnh BC lấy B’ sao cho H là trung điểm của BB’. CMR: ∆ABB' cân. CMR: ∆AB'C cân. CMR: AE = HC.