Cho tam giác ABC nhọn ( ^ABC = a , ^ACB = B )
) nội tiếp đường tròn (O;R) có tâm nội tiếp I, tâm bàng tiếp J ứng với đỉnh A và đường cao AD. Trên tia AD lấy điểm K sao cho AK=2R.
a) Chứng minh: ^OAI = ^DAO / 2 = a^2 - B^2 / sdBAC
và tứ giác DIJK nội tiếp ?
b) Gọi M là điểm chính giữa cung BC nhỏ, AM cắt BC tại L. Tia KM cắt (KIJ) tại điểm thứ hai N. CMR: KL vuông góc AN ?
c) Lấy Q đối xứng với J qua K. CMR: Trực tâm tam giác AJQ nằm trên đường thẳng BC ?
d) Gọi DI căt AC tại E, IK cắt BC tại F. Giả sử
, chứng minh rằng: Nếu IE = IF thì a<= 3B
?