1. Cho (O) và (O') cắt nhau tại 2 điểm A và B. Trên tia đối tia AB lấy điểm M khác điểm A. Qua M vẽ các tiếp tuyến MC, MD với (O') (C, D là tiếp điểm và C nằm ngoài (O). Đường thẳng AC cắt (O) tại P (khác A), AD cắt (O) tại Q (khác A). CD cắt
a) Chứng minh tgBCD
đồng dạng với tg BPQ
b) Chứng minh đường tròn ngoại tiếp tam giác KPC luôn đi qua một điểm cố định khi M thay đổi
c) Chứng minh OK vuông góc với PQ
2. cho đường tròn (O) và điểm A nằm ngoài đường tròn. Từ A kẻ các tiếp tuyến AB, AC(B, C là tiếp điểm). Qua B kẻ đường thẳng song song với AC cắt (O) tại E. AE cắt (O) tại D, BD cắt AC tại M. CHứng minh M là trung điểm của AC