Hoàng Đạt | Chat Online
31/12/2020 20:38:04

Cho đường tròn (O), từ điểm M nằm bên ngoài đường tròn, kẻ các tiếp tuyến MA, MB với đường tròn (A, B là các tiếp điểm)


Bài 1: Cho đường tròn (O); từ điểm M nằm bên ngoài đường tròn, kẻ các tiếp tuyến MA, MB với đường tròn (A, B là các tiếp điểm).
Chứng minh: MO AB.
Kẻ đường kính BOC, chứng minh rằng AC//MO.
Tính độ dài các cạnh của tam giác MAB biết OA = 4cm; OM = 5cm.
Bài 2: Cho đường tròn (O;R) dây MN khác đường kính. Qua O kẻ đường vuông góc với MN tại H, cắt các tiếp tuyến tại M của đường tròn tại điểm A.
Chứng minh rằng: AN là tiếp tuyến của đường tròn tại điểm A.
Vẽ đường kính ND, chứng minh MD//AO.
Xác định vị trí điểm A để AMN đều.
Bài 3: Cho đường tròn (O;R), dây BC khác đường kính. Qua O kẻ đường vuông góc với BC tại I, cắt tiếp tuyến tại B của đường tròn tại điểm A, vẽ đường kính BD.
Chứng minh : CD//OA.
Chứng minh: AC là tiếp tuyến của đường tròn (O).
Đường thẳng vuông góc với BD tại O cắt BC tại K. Chứng minh: IK.IC+OI.IA= R2.
Bài 4: Cho đường tròn (O), từ điểm M nằm ngoài đường tròn kẻ các tiếp tuyến MD, ME với đường tròn (D,E là các tiếp điểm). Qua điểm I thuộc cung nhỏ DE, kẻ tiếp tuyến với đường tròn đường thẳng này cắt MD và ME lần lượt ở P và Q. Biết MD = 4cm, tính chu vi của tam giác MPQ.
Bài 5: Cho đường tròn (O;3cm) và điểm A thỏa mãn OA = 5cm. Kẻ các tiếp tuyến AB, AC với đường tròn. Gọi H là giao điểm của AO với BC.
Tính OH.
Qua điểm M bất kỳ thuộc cung nhỏ BC kẻ tiếp tuyến với (O) cắt AB, AC theo thứ tự tại D và E. Tính chu vi tam giác ADE.
Bài 6: Cho (O; 2cm), các tiếp tuyến AB, AC kẻ từ A đến đường tròn vuông góc với nhau tại A (B, C là các tiếp điểm).
Tứ giác ABOC là hình gì ? vì sao ?
Gọi M là điểm bất kỳ thuộc cung nhỏ BC. Qua M kẻ tiếp tuyến với đường tròn, cắt AB và AC theo thứ tự tại E và F. Tính chu vi của tam giác AEF.
Tính số đo góc EOF ?
Bài 7: Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A;AH). Kẻ các tiếp tuyến BD, CE với đường tròn (D, E là các tiếp điểm khác điểm H).
Chứng minh 3 điểm D, A, E thẳng hàng.
DE là tiếp tuyến của đường tròn đường kính BC.
Bài 8: Cho nửa đường tròn (O) đường kính AB. Trên nửa mặt phẳng có bờ là AB kẻ các tiếp tuyến Ax và By với (O). Qua điểm M thuộc nửa đường tròn (M khác A và B) kẻ đường thẳng vuông góc với OM cắt Ax, By lần lượt ở E và F. Chứng minh:
EF = AE + BF.
Xác định vị trí của M để EF có độ dài nhỏ nhất.
Bài 9: Cho nửa đường tròn tâm O đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By cùng thuộc nửa mặt phẳng chứa nửa đường tròn bờ AB). Gọi M là điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax, By tại C và D.
Chứng minh đường tròn đường kính CD tiếp xúc với AB.
Tìm vị trí của điểm M để hình thang ABDC có chu vi nhỏ nhất.
Kẻ MH AB tại H. Chứng minh rằng BC đi qua trung điểm I của MH.
Tìm vị trí của C, D để hình thang ABDC có chu vi bằng 14cm, biết AB = 4cm.
Bài 10: Cho (O;R) có đường kính AB và hai tiếp tuyến Ax, By (Ax, By cùng thuộc nửa mặt phẳng có bờ là AB). Một tiếp tuyến khác tại điểm M cắt Ax ở C và By ở D.
Chứng minh : CD = AC + BD.
Chứng minh: ∆COD vuông.
Chứng minh: AB2 = 4AC.BD (hoặc tích AC.BD không đổi khi M di chuyển).
AM cắt OC tại I, BM cắt OD tại K. Tứ giác OIMK là hình gì ? Tìm vị trí của điểm M để OIMK là hình vuông.
Kẻ MH AB (H AB). Chứng minh rằng BC đi qua trung điểm của MH.

Lazi.vn