Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn tâm O và AB < AC. Vẽ đường kính AD của đường tròn tâm O. Kẻ BE và CF vuông góc với AD (E, F thuộc AD). Kẻ AH vuông góc với BC (H thuộc BC)
Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn tâm O và AB < AC. Vẽ đường kính AD của đường tròn tâm O. Kẻ BE và CF vuông góc với AD (E, F thuộc AD). Kẻ AH vuông góc với BC (H thuộc BC).
a) Chứng minh bốn điểm A,B,H,E cùng nằm trên một đường tròn.
b) Chứng minh HE//CD.
c) Gọi M là trung điểm của BC. Chứng minh ME=MF