Cho tam giác ABC nhọn. Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh tam giác ABE = tam giác ADC
Hộ mk nha toàn bài nâng cao thôi nà
BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:
a) ∆ABE = ∆ADC
b) Góc BMC = 120o
Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).
a) Chứng minh: EM + HC = NH.
b) Chứng minh: EN // FM.
Bài 3:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.
a) Chứng minh rằng: BE = CD; AD = AE.
b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.
c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.
Bài 4: . Cho tam giác vuông ABC: A = 90o , đường cao AH, trung tuyến AM. Trên tia đối tia MA lấy điểm D sao cho DM = MA. Trên tia đối tia CD lấy điểm I sao cho
CI = CA, qua I vẽ đường thẳng song song với AC cắt đường thẳng AH tại E.
Chứng minh: AE = BC.
Bài 5: Cho ba điểm B, H, C thẳng hàng, BC = 13 cm, BH = 4 cm, HC = 9 cm. Từ H vẽ tia Hx vuông góc với đường thẳng BC.
Lấy A thuộc tia Hx sao cho HA = 6 cm.
a) ∆ABC là ∆ gì ? Chứng minh điều đó.
b) Trên tia HC lấy điểm D sao cho HD = HA. Từ D vẽ đường thẳng song song với AH cắt AC tại Chứng minh: AE = AB
Bài 6: Cho tam giác ABC cân tại A có A = 20o, vẽ tam giác đều DBC (D nằm trong tam giác ABC). Tia phân giác của góc ABD cắt AC tại M. Chứng minh:
a) Tia AD là phân giác của góc BAC
b) AM = BC