Vương Nguỵ | Chat Online
18/03/2018 17:35:17

Trong mặt phẳng cho 12 điểm tuỳ ý, trong đó không có ba điểm nào thẳng hàng. Chứng minh tồn tại 3 điểm là các đỉnh của một tam giác có một góc nhỏ hơn 18 độ


Bài 1: Trong mặt phẳng cho 12 điểm tuỳ ý, trong đó không có ba điểm nào thẳng hàng.
a) CMR tồn tại 3 điểm là các đỉnh của một tam giác có một góc nhỏ hơn 18*.
b) CMR tồn tại ba điểm là các đỉnh của một tam giác có một góc ko vượt quá 15*.
Bài 2: Bên trong một đường tròn có bán kính bằng 2 cho 7 điểm. CMR luôn tồn tại hai điểm trong 7 điểm đó có khoảng cách nhỏ hơn 2.
Bài tập chưa có câu trả lời nào. Rất mong nhận được trả lời của bạn! | Chính sách thưởng | Quy chế giải bài tập
Không chấp nhận lời giải copy từ Trợ lý ảo / ChatGPT. Phát hiện 1 câu cũng sẽ bị xóa tài khoản và không được thưởng
Đăng ký tài khoản để nhận Giải thưởng khi trả lời bài tập.
Đăng ký tài khoản để có thể trả lời bài tập này!

Đăng ký qua Facebook hoặc Google:

Hoặc lựa chọn:
Đăng ký bằng email, điện thoại Đăng nhập bằng email, điện thoại
Lazi.vn