Cho đường tròn (O) và (O') cắt nhau tại A và B (O,O' thuộc 2 nửa mặt phẳng bờ AB), một cát tuyến kẻ qua A cắt (O) ở C, cắt (O') ở D. Kẻ OM vuông góc với CD, O'N vuông góc với CD
a) Chứng minh: MN=1/2 CD
b) Gọi I là trung điểm của MN. Chứng minh: đường thẳng kẻ qua I vuông góc với BC đi qua 1 điểm cố định khi cát tuyến vẽ qua A thay đổi
c) Qua A kẻ cát tuyến // với đường nối tâm OO', cắt (O) tại P, cắt (O') tại Q. So sánh PQ và CD.