Cho đường tròn (O) và dây cung BC cố định khác đường kính. Gọi A là điểm bất kì trên cung nhỏ BC (A không trùng với B và C; AB khác AC)
Cho đường tròn (O) và dây cung BC cố định khác đường kính. Gọi A là điểm bất kì trên cung nhỏ BC (A không trùng với B và C; AB khác AC). Kẻ đường kính AK của đường tròn (O). Gọi D là chân đường vuông góc kẻ từ A đến BC; E, F lần lượt là chân đường vuông góc kẻ từ B, C đến AK. Chứng minh:
1) Tứ giác ABDE nội tiếp.
2) BD.AC = AD.KC.
3) DE vuông góc với AC.