----- Nội dung dịch tự động từ ảnh ----- Đề bài: Cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE, CF trực tâm H.Chứng minh rằng: a) (2,5điểm) Tam giác AEB và tam giác AFC đồng dạng. Từ đó suy ra AE.AC = AF.AB b)(2điểm) AEF = ABC c)(2diểm) d) (2 điểm) Vẽ hình bình hành BHCK.Gọi O là trung điểm của AK. Chứng minh O là tâm đường tròn ngoại tiếp tam giác ABC OB - OC = AK e) (1điểm) Gọi G là trọng tâm tam giác ABC. BF.BA+CE.CA= BC² 2. Chứng minh 3 điểm H:G:O thắng hàng. H(0,5điểm) Khi BC=a không đổi. Tìm giá trị lớn nhất của tích DH.DA