a) Cho nửa đường tròn tâm O, đường kính AB. Vẽ dây CD bất kì khác AB. Từ C và D lần lượt kẻ các đường vuông góc với CD, các đường này cắt AB theo thứ tự tại E, F. Chứng minh AF = BE.
b) Cho nửa đường tròn (O), đường kính MN. Trên MN lấy hai điểm A và B sao cho AM = BN. Qua A và B kẻ các đường thẳng song song với nhau, chúng cắt nửa đường tròn (O) lần lượt lại E và F. Chứng minh AE và BF vuông góc với EF.