Cho tam giác ABC vuông tại A, AB = a; AC = 3a. Trên AC lấy D; E sao cho AD = DE = EC. Chứng minh DE/DB = DB/CD. Chứng minh tam giác BDE đồng dạng tam giác CDB
1. Cho tam giác ABC vuông tại A.AB=a;AC=3a.Trên AC lấy D;E sao cho AD=DE=EC
a) CM:DE/DB=DB/CD
b) CM :Tam giác BDE ~Tam giác CDB
c) góc AEB+góc BCD=?
2. Cho hình thang ABCD có AD=BC,đường chéo AC vuông góc với BD.Biết AD=5a;AC=12a
a) Tính (sinB+cosB)/(sinB-cosB)
b) S hình thang ABCD=?
3. Cho tam giác ABC vuông tại A,đường cao AH.Gọi D là điểm đối xứng với A qua B.Trên tia đối của HA lấy E sao cho HE=2HA.Gọi I là hình chiếu của D trên HE
a) Tính AB;AC;HC biết AH=4cm;HB=3cm
b) Tính tan góc IED;tan góc HCE
c) CM:góc IED=góc HCE
d) CM:DE vuông góc với EC