Bài 7 ----- Nội dung dịch tự động từ ảnh ----- Bài 6: Cho đoạn thẳng AB cố định. Một điểm M di động trên đoạn AB. Dựng về cùng một nửa mặt phẳng có bờ là đường thẳng AB các hình vuông AMDE, MBGH. Gọi O, O tương ứng là tâm các hình vuông trên. a) Tìm quỹ tích trung điểm I của đoạn OO'. b) Chứng minh rằng AH và EG đi qua giao điểm N khác M của các đường tròn ngoại tiếp các hình vuông AMDE và MBGH. c) Chứng minh rằng đường thẳng MN luôn đi qua một điểm cố định. Bài 7: Cho hai đường tròn (O; R) và (O'; R') cắt nhau tại A và D có các đường kính AOB và AO'C vuông góc với nhau tại A. Một đường thẳng d đi qua A và cắt các nửa đường tròn không chứa điểm D của (O), (O') tương ứng tại các điểm M, N khác A. a) Chứng minh tam giác ABM và tam giác CAN đồng dạng. b) Tìm quỹ tích giao điểm P của OM và O'N khi d di động. c) Tiếp tuyến M của (O) cắt AD tại I. Chứng minh rằng: IM° = IA. ID. d) Tìm vị trí của cát tuyến d để cho tiếp tuyến tại M của (O) và tiếp tuyến tại N của (O') cắt nhau tại một điểm thuộc đường thẳng AD. e) Xác định vị trí của d sao cho tứ giác MNCB có diện tích lớn nhất. Tìm giá trị lớn nhất đó theo R và R'.