Cho đường tròn tâm O có dây BC cố định khác đường kính. Lấy điểm A bất kỳ trên cung lớn BC sao cho tam giác ABC nhọn và AB < AC. Kẻ đường cao AE, CF của tam giác ABC. Kẻ đường kính AD của (O). Gọi N là hình chiếu vuông góc của C trên AD
Cho đường tròn tâm O có dây BC cố định khác đường kính. Lấy điểm A bất kỳ trên cung lớn BC sao
cho tam giác ABC nhọn và AB < AC. Kẻ đường cao AE, CF của tam giác ABC. Kẻ đường kính AD của (O). Gọi N là
hình chiếu vuông góc của C trên AD.
a) Chứng minh bốn điểm A, E, N, C cùng thuộc đường tròn đường kính AC.
b) Chứng minh EN song song với BD.
c) Chứng minh rằng khi điểm A di động trên cung lớn BC và thỏa mãn yêu cầu đầu bài thì đường thẳng NF luôn đi
qua một điểm cố định.