Hoàng Bill | Chat Online
24/03/2024 10:43:35

Cho (O) đường kính BC. Trên tia đối của tia BC lấy điểm A khác B. Từ A kẻ các tiếp tuyến AD và AE (D và E là 2 tiếp điểm). Kẻ DH vuông góc EC tại H. Gọi P là trung điểm của DH, Q là giao điểm của CP với đường tròn tâm O (Q khác C)


Cho (O) đường kính BC, Trên tia đối của tia BC lấy điểm A khác B, Từ A kẻ các tiếp tuyến AD và AE (D và E là 2 tiếp điểm), Kẻ DH vuông góc EC tại H, Gọi P là trung điểm của DH, Q là giao điểm của CP với đường tròn tâm O (Q khác C) .Gọi I là giao điểm của AC và DE. Chứng minh rằng: 
a.AE^2=AB.AC
b.AB.AC=AI.AO
c.cm 4 điểm Q,D,P,I cùng thuộc đường tròn
d.cm 4 điểm Q,I,E,A cùng thuộc đường tròn
e.AC là tiếp tuyến của đường tròn ngoại tiếp tam giác ADQ
Bài tập chưa có câu trả lời nào. Rất mong nhận được trả lời của bạn! | Chính sách thưởng | Quy chế giải bài tập
Không chấp nhận lời giải copy từ Trợ lý ảo / ChatGPT. Phát hiện 1 câu cũng sẽ bị xóa tài khoản và không được thưởng
Đăng ký tài khoản để nhận Giải thưởng khi trả lời bài tập.
Đăng ký tài khoản để có thể trả lời bài tập này!

Đăng ký qua Facebook hoặc Google:

Hoặc lựa chọn:
Đăng ký bằng email, điện thoại Đăng nhập bằng email, điện thoại
Lazi.vn