1. Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. Chứng minh rằng:
a) BM = CN.
b) BC < MN.
c) Đường thẳng vuông góc với MN tại giao điểm của MN và BC luôn luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC