Chứng minh rằng bốn điểm H, K, A, M cùng thuộc một đường tròn và xác định tâm I của đường tròn đó
VẼ CẢ HÌNH NHA
Câu 4: (3,5 điểm) Cho đường tròn tâm O và đường thẳng d nằm ngoài đường tròn. Trên đường thẳng d lấy điểm M bất kỳ, từ M kẻ hai tiếp tuyến MB, MC với đường tròn (B,C là các tiếp điểm). Kẻ OA vuông góc với đường thẳng d tại A, OM cắt BC tại H, OA cắt BC tại K.
1. Chứng minh rằng bốn điểm H, K, A, M cùng thuộc một đường tròn và xác định tâm I của đường tròn đó.
2. Gọi E là giao điểm của đường tròn (O) và (I). Chứng minh:OA. OK = OB² và OE là tiếp tuyến của đường tròn (I)
3. Tìm vị trí của điểm M trên đường thẳng d để diện tích tam giác OKH lớn nhất