Iiii iiii | Chat Online
09/09 23:24:25

Chứng minh: 5 điểm M, A, E, O, B cùng nằm trên một đường tròn. Chứng minh: \( MC \cdot MD = MA^2 = MO^2 - R^2 \)


----- Nội dung ảnh -----
Được quét bằng CamScanner

Kết đường thẳng \( (d) \) cố định ở ngoài \( (O:R) \) (khoảng cách từ \( O \) đến \( (d) \) không nhỏ hơn \( R\sqrt{2} \)). Từ một điểm \( M \) nằm trên đường thẳng \( (d) \) ta dựng các tiếp tuyến \( MA, MB \) đến \( (O:R) \) \( (A, B \) là các tiếp điểm\() và dựng cát tuyến \( MCD \) (tia \( MC \) nằm giữa hai tia \( MO, MA \) và \( MC < MD \)). Gọi \( E \) là trung điểm của \( CD \), \( H \) là giao điểm của \( AB \) và \( MO \).

1. Chứng minh: 5 điểm \( M, A, E, O, B \) cùng nằm trên một đường tròn.
2. Chứng minh: \( MC \cdot MD = MA^2 = MO^2 - R^2 \).
3. Chứng minh: Các tiếp tuyến tại \( C, D \) của đường tròn \( (O:R) \) cắt nhau tại một điểm nằm trên đường thẳng \( AB \).
4. Chứng minh: Đường thẳng \( AB \) luôn đi qua một điểm cố định.
5. Chứng minh: Một đường thẳng đi qua \( O \) vuông góc với tia \( MO \) cắt các tia \( MA, MB \) lần lượt tại \( P, Q \). Tìm GTNN của \( S_{MPO} \).
Bài tập đã có 1 trả lời, xem 1 trả lời ... | Chính sách thưởng | Quy chế giải bài tập
Không chấp nhận lời giải copy từ Trợ lý ảo / ChatGPT. Phát hiện 1 câu cũng sẽ bị xóa tài khoản và không được thưởng
Đăng ký tài khoản để nhận Giải thưởng khi trả lời bài tập.
Đăng ký tài khoản để có thể trả lời bài tập này!

Đăng ký qua Facebook hoặc Google:

Hoặc lựa chọn:
Đăng ký bằng email, điện thoại Đăng nhập bằng email, điện thoại
Lazi.vn