Cho tam giác ABC nhọn, nội tiếp đường tròn (O;R) . Kẻ AH vuông góc với BC tại H, HK vuông góc với AB tại K và HI vuông góc với AC tại I.
a) Chứng minh tứ giác AKHI nội tiếp.
b) Gọi E là giao điếm của AH với KI Chứng minh rằng EA⋅EH=EK⋅EI.
c) Chứng minh KJ vuông góc với AO.
d) Giả sử điểm A và đường tròn (O;R) cố định, còn dây cung BC thay đổi sao cho AB⋅AC=3R2. Xác định vị trí của dây cung BC sao cho tam giác ABC có diện tích lớn nhất.