Cho đường tròn (O; R) và dây AB cố định không đi qua tâm. Trên tia đối của tia AB lấy điểm C (C khác A). Từ C kẻ 2 tiếp tuyến CM và CN với đường tròn (O) (M và N là các tiếp điểm; tia CO nằm giữa hai tia CM và CA). Gọi D là trung điểm AB.
a) Chứng minh tứ giác CMOD nội tiếp.
b) Chứng minh: CN2 = CA.CB
c) ND cắt (O) tại I. Chứng minh: MI // ABư
d) Gọi E là giao điểm của MN và AB. Chứng minh 2CE=1CA+1CB.