Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Từ A kẻ tiếp tuyến AM, AN tới đường tròn (M, N là các tiếp điểm).
1) Chứng minh tứ giác AMON nội tiếp.
2) Trên cung nhỏ MN lấy điểm B khác M, N và B không là điểm chính giửa của cung MN. Tia AB cắt đường tròn (O) tại điểm thứ hai C. Chứng minh: AM2 = AB.AC
3) Gọi H là giao điểm của AO và MN. Chứng minh góc AHB= góc ACO.