Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Từ A kẻ tiếp tuyến AM, AN tới đường tròn (M, N là các tiếp điểm).
1) Chứng minh tứ giác AMON nội tiếp.
2) Trên cung nhỏ MN lấy điểm B khác M, N và B không là điểm chính giửa của cung MN. Tia AB cắt đường tròn (O) tại điểm thứ hai C. Chứng minh: AM2 = AB.AC
3) Gọi H là giao điểm của AO và MN. Chứng minh góc AHB= góc ACO.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
1) Ta có:
OMA^= 90° (AM là tiếp tuyến của (O))
ONA^= 90° (AN là tiếp tuyến của (O))
Xét tứ giác ABOC có OMA^ + ONA^= 90° + 90° = 180°
Suy ra tứ giác ABOC nội tiếp.
2) Xét ∆AMB và ∆ACM có:
MAC^là góc chung
MCB^=BMA^(góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cùng chắn cung MB).
Suy ra ∆AMB ∆ACM (g.g)
Từ đó suy ra AMAC=ABAM⇔AM2=AC.AB (điều phải chứng minh)
3) Ta có OM = ON = R.
MA = MB (tính chất hai tiếp tuyến cắt nhau)
Suy ra OA là trung trực của MN suy ra OA ^ MN.
Xét ∆OMA vuông tại M có đường cao MH ta có:
MA2 = AH.AO ⇔ABAO=AHAC
Mà MA2 = AC.AB (chứng minh trên)
Suy ra AH.AO = AC.AB
∆ABH và ∆AOC có:
OAC^là góc chung
ABAO=AHAC(chứng minh trên)
Do đó ∆ABH ∆AOC (c.g.c)
Suy ra AHB^=ACO^ (hai góc tương ứng).
Tham gia Cộng đồng Lazi trên các mạng xã hội | |
Fanpage: | https://www.fb.com/lazi.vn |
Group: | https://www.fb.com/groups/lazi.vn |
Kênh FB: | https://m.me/j/AbY8WMG2VhCvgIcB |
LaziGo: | https://go.lazi.vn/join/lazigo |
Discord: | https://discord.gg/4vkBe6wJuU |
Youtube: | https://www.youtube.com/@lazi-vn |
Tiktok: | https://www.tiktok.com/@lazi.vn |
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |