Giả sử một phòng thí nghiệm phải kiểm tra 120 mẫu máu người (mỗi mẫu của 1 người) để tìm ra các mẫu có chứa một loại kháng thể X. Giả sử xác suất để 1 mẫu máu có kháng thể X là 2% và các mẫu máu độc lập với nhau.
Do tính cấp bách của công tác phòng chống dịch nên thời gian dành cho xét nghiệm là rất ngắn. Thay vì xét nghiệm từng mẫu một, người ta làm như sau: Chia 120 mẫu thành 6 nhóm, mỗi nhóm có 20 mẫu. Lấy một ít máu từ mỗi mẫu trong cùng một nhóm trộn với nhau để được 1 mẫu hỗn hợp, rồi xét nghiệm mẫu hỗn hợp đó. Nếu kết quả xét nghiệm mẫu hỗn hợp là âm tính (mẫu hỗn hợp không có kháng thể X) thì coi như cả 20 mẫu trong nhóm đều không có kháng thể X, còn nếu mẫu hỗn hợp có kháng thể X, thì làm tiếp 20 xét nghiệm, mỗi xét nghiệm cho từng mẫu của nhóm.
Gọi S là tổng số lần phải xét nghiệm cho cả 6 nhóm. Tính kì vọng và phương sai của biến ngẫu nhiên rời rạc S (làm tròn kết quả đến hàng phần trăm).