Giả sử một phòng thí nghiệm phải kiểm tra 120 mẫu máu người (mỗi mẫu của 1 người) để tìm ra các mẫu có chứa một loại kháng thể X. Giả sử xác suất để 1 mẫu máu có kháng thể X là 2% và các mẫu máu độc lập với nhau.
Do tính cấp bách của công tác phòng chống dịch nên thời gian dành cho xét nghiệm là rất ngắn. Thay vì xét nghiệm từng mẫu một, người ta làm như sau: Chia 120 mẫu thành 6 nhóm, mỗi nhóm có 20 mẫu. Lấy một ít máu từ mỗi mẫu trong cùng một nhóm trộn với nhau để được 1 mẫu hỗn hợp, rồi xét nghiệm mẫu hỗn hợp đó. Nếu kết quả xét nghiệm mẫu hỗn hợp là âm tính (mẫu hỗn hợp không có kháng thể X) thì coi như cả 20 mẫu trong nhóm đều không có kháng thể X, còn nếu mẫu hỗn hợp có kháng thể X, thì làm tiếp 20 xét nghiệm, mỗi xét nghiệm cho từng mẫu của nhóm.
Gọi S là tổng số lần phải xét nghiệm cho cả 6 nhóm. Tính kì vọng và phương sai của biến ngẫu nhiên rời rạc S (làm tròn kết quả đến hàng phần trăm).Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
Gọi Xi là số lần xét nghiệm ở nhóm thứ i với i Î{1; 2; 3; 4; 5; 6}.
Ta có E(X1) = E(X2) = … = E(X6)
Vì S = X1 + X2 + X3 + X4 + X5 + X6.
Vì các nhóm là độc lập với nhau nên
E(S) = E(X1) + E(X2) + E(X3) + E(X4) + E(X5) + E(X6) = 6 E(X1).
TH1: Nếu kết quả của mẫu máu hỗn hợp là âm tính thì chỉ cần 1 lần xét nghiệm.
TH2: Nếu kết quả của mẫu máu hỗn hợp là dương tính thì cần 21 lần xét nghiệm tất cả.
Ta có bảng phân bố xác suất
X1 | 1 | 21 |
P | 0,9820 | 1 – 0,9820 |
Do đó E(X1) = 1. 0,9820 + 21. (1 – 0,9820) ≈ 7,65.
V(X1) = 12. 0,9820 + 212. (1 – 0,9820) − 7,652 ≈ 88,73.
Vậy E(S) = 6.7,65 = 45,9.
V(S) = 6.88,73 = 532,38.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |