Cho đường tròn (O,R) cố định. Từ M nằm ngoài đường tròn (O) kẻ 2 tiếp tuyến MA,MB (A,B là các tiếp điểm). Gọi H là giao điểm của OM, AB.
a) Chứng minh: OM vuông góc với AB và OH.OM = R2.
b) Từ M kẻ cát tuyến MNP với đường tròn (O) (N nằm giữa M,P), gọi I là trung điểm NP (I khác O). Chứng minh: A, M, O, I thuộc một đường tròn và tìm tâm của đường tròn đó.
c) Qua N kẻ tiếp tuyến với đường tròn (O), cắt MA, MB theo thứ tự C,D. Biết MA = 5cm, tính chu vi tam giác MCD.
d) Qua O kẻ đường thẳng d vuông góc với OM, cắt MA, MB lần lượt tại E, F. Xác định vị trí của điểm M để diện tích tam giác MEF nhỏ nhất.