Đặng Bảo Trâm | Chat Online
12/09 17:41:37

Cho hàm số \(y = \frac{{m{x^2} + \left( {2m - 1} \right)x - 1}}\) với m là tham số. a) Chứng minh rằng hàm số đã cho luôn có cực đại, cực tiểu với mọi m > 0. b) Khảo sát và vẽ đồ thị (H) của hàm số đã cho với m = 1. c) Giả sử ∆ cắt tiệm cận đứng và tiệm cận xiên của (H) tại điểm M ∈ (H) bất kì. Chứng minh rằng nếu ∆ cắt tiệm cận đứng và tiệm cận xiên của (H) tại A và B thì M luôn là trung điểm của đoạn AB.


Cho hàm số \(y = \frac{{m{x^2} + \left( {2m - 1} \right)x - 1}}\) với m là tham số.

a) Chứng minh rằng hàm số đã cho luôn có cực đại, cực tiểu với mọi m > 0.

b) Khảo sát và vẽ đồ thị (H) của hàm số đã cho với m = 1.

c) Giả sử ∆ cắt tiệm cận đứng và tiệm cận xiên của (H) tại điểm M ∈ (H) bất kì. Chứng minh rằng nếu ∆ cắt tiệm cận đứng và tiệm cận xiên của (H) tại A và B thì M luôn là trung điểm của đoạn AB.

Bài tập đã có 1 trả lời, xem 1 trả lời ... | Chính sách thưởng | Quy chế giải bài tập
Không chấp nhận lời giải copy từ Trợ lý ảo / ChatGPT. Phát hiện 1 câu cũng sẽ bị xóa tài khoản và không được thưởng
Đăng ký tài khoản để nhận Giải thưởng khi trả lời bài tập.
Đăng ký tài khoản để có thể trả lời bài tập này!

Đăng ký qua Facebook hoặc Google:

Hoặc lựa chọn:
Đăng ký bằng email, điện thoại Đăng nhập bằng email, điện thoại
Lazi.vn