Cho hàm số \(y = \frac{{m{x^2} + \left( {2m - 1} \right)x - 1}}\) với m là tham số.
a) Chứng minh rằng hàm số đã cho luôn có cực đại, cực tiểu với mọi m > 0.
b) Khảo sát và vẽ đồ thị (H) của hàm số đã cho với m = 1.
c) Giả sử ∆ cắt tiệm cận đứng và tiệm cận xiên của (H) tại điểm M ∈ (H) bất kì. Chứng minh rằng nếu ∆ cắt tiệm cận đứng và tiệm cận xiên của (H) tại A và B thì M luôn là trung điểm của đoạn AB.
Bằng cách nhấp vào Đăng nhập, bạn đồng ý Chính sách bảo mật và Điều khoản sử dụng của chúng tôi. Nếu đây không phải máy tính của bạn, để đảm bảo an toàn, hãy sử dụng Cửa sổ riêng tư (Tab ẩn danh) để đăng nhập (New Private Window / New Incognito Window).
a) Tập xác định: D = ℝ\{−2}.
Ta có: \(y' = \frac{{m{x^2} + 4mx + 4m - 1}}{{{{\left( {x + 2} \right)}^2}}}\)
y' = 0 ⇔ mx2 + 4mx + 4m – 1 = 0
Xét ∆' = 4m2 – m(4m – 1) = 4m2 – 4m2 + m = m.
Với m > 0 thì ta được y' = 0 là phương trình bâc hai có hai nghiệm phân biệt x1, x2.
Bảng biến thiên của hàm số như sau:
Vậy hàm số luôn có cực đại, cực tiểu với mọi m > 0.
b) Với m = 1, ta có: y = \(\frac{{{x^2} + x - 1}}\)
Tập xác định: D = ℝ\{−2}.
Ta có: \(y' = \frac{{{x^2} + 4x + 3}}{{{{\left( {x + 2} \right)}^2}}}\)
y' = 0 ⇔ x2 + 4x + 3 = 0 ⇔ x = −3 hoặc x = −1.
Ta có: \(\mathop {\lim }\limits_{x \to + \infty } y = + \infty ;\mathop {\lim }\limits_{x \to - \infty } y = - \infty \) .
\(\mathop {\lim }\limits_{x \to - {2^ + }} y = + \infty ;\mathop {\lim }\limits_{x \to - {2^ - }} y = - \infty \).
Do đó, đồ thị hàm số nhận đường thẳng x = −2 làm tiệm cận đứng.
Ta có: y = \(\frac{{{x^2} + x - 1}}\)= x – 1 + \(\frac{1}\).
Suy ra \(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{1} = 0\)
Do đó, đường thẳng y = x – 1 là tiệm cận xiên của đồ thị hàm số.
Ta có bảng biến thiên như sau:
Đồ thị của hàm số như sau:
c) Lấy M\(\left( {t;\frac{{{t^2} + t - 1}}} \right)\) ∈ (H) bất kì.
Phương trình tiếp tuyến của đồ thị (H) tại M là:
d: y = y'(t)(x – t) + y(t)
y = \(\frac{{{t^2} + 4t + 3}}{{{{\left( {t + 2} \right)}^2}}}\left( {x - t} \right) + \frac{{{t^2} + t - 1}}\).
Tiếp tuyến d cắt tiệm cận đứng tại điểm A\(\left( { - 2; - \frac} \right)\).
Tiếp tuyến d cắt tiệm cận xiên tại điểm B(2t + 2; 2t + 1).
Ta có: \(\left\{ \begin{array}{l}{x_A} + {x_B} = 2t = 2{x_M}\\{y_A} + {y_B} = (2t + 1) - \frac = \frac{{2{t^2} + 2t - 2}} = 2{y_M}\end{array} \right.\).
Vậy M là trung điểm của đoạn AB.
Hôm nay bạn thế nào? Hãy nhấp vào một lựa chọn, nếu may mắn bạn sẽ được tặng 50.000 xu từ Lazi
Vui | Buồn | Bình thường |