Cho ∆ABC nhọn (AB < AC) nội tiếp đường tròn (O), có các đường cao BE và CF cắt nhau tại H. Vẽ đường kính AK của đường tròn (O).
a) Chứng minh tứ giác BFEC nội tiếp đường tròn.
b) Gọi D là giao điểm của AH và BC. Chứng minh AE.AC = AH.AD.
c) Gọi M là hình chiếu của D lên BE. Qua M vẽ đường thẳng vuông góc với AK, đường thẳng này cắt CF tại N. Chứng minh: AK ^ EF và tứ giác HNDM nội tiếp.