a) Cho tam giác ABC không phải là tam giác vuông có BC = a, AC = b; AB = c và R là bán kính đường tròn ngoại tiếp tam giác đó. Vẽ đường kính BD.
i) Tính sin BDC^ theo a và R.
ii) Tìm mối liên hệ giữa hai góc BAC^ và BDC^ . Từ đó chứng minh rằng 2R = asinA .
b) Cho tam giác ABC với góc A vuông. Tính sinA và so sánh a với 2R để chứng tỏ ta vẫn có công thức 2R = asinA .