Ngô Minh Khoa | Chat Online
13/09 20:53:30

Cho tam giác ABC có 3 góc nhọn và AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Trên tia đối của MH lấy điểm K sao cho HM = MK. Chứng minh: Tứ giác BHCK là hình bình hành


----- Nội dung ảnh -----
Bài 4. (3,5 điểm) Cho tam giác ABC có 3 góc nhọn và AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Trên tia đối của MH lấy điểm K sao cho HM = MK.
a) Chứng minh: Tứ giác BHCK là hình bình hành.
b) Chứng minh BK ⊥ AB và CK ⊥ AC
c) Gọi I là điểm đối xứng với H qua BC. Chứng minh: Tứ giác BIKC là hình thang cân.
d) BK cắt HI tại G. Tam giác ABC phải có thêm điều kiện gì để tứ giác GHCK là hình thang cân.
Bài tập đã có 1 trả lời, xem 1 trả lời ... | Chính sách thưởng | Quy chế giải bài tập
Không chấp nhận lời giải copy từ Trợ lý ảo / ChatGPT. Phát hiện 1 câu cũng sẽ bị xóa tài khoản và không được thưởng
Đăng ký tài khoản để nhận Giải thưởng khi trả lời bài tập.
Đăng ký tài khoản để có thể trả lời bài tập này!

Đăng ký qua Facebook hoặc Google:

Hoặc lựa chọn:
Đăng ký bằng email, điện thoại Đăng nhập bằng email, điện thoại
Lazi.vn