Phạm Minh Trí | Chat Online
13/09 23:15:45

Cho hàm số y = cot x. a) Xét tính chẵn, lẻ của hàm số. b) Hoàn thành bảng giá trị sau của hàm số y = cot x trên khoảng (0; π). x \(\frac{\pi }{6}\) \(\frac{\pi }{4}\) \(\frac{\pi }{3}\) \(\frac{\pi }{2}\) \(\frac{{2\pi }}{3}\) \(\frac{{3\pi }}{4}\) \(\frac{{5\pi }}{6}\) y = cot x ? ? ? ? ? ? ? Bằng cách lấy nhiều điểm M(x; cot x) với x ∈ (0; π) và nối lại ta được đồ thị hàm số y = cot x trên khoảng (0; π). c) Bằng cách làm tương tự câu b cho các ...


Cho hàm số y = cot x.

a) Xét tính chẵn, lẻ của hàm số.

b) Hoàn thành bảng giá trị sau của hàm số y = cot x trên khoảng (0; π).

x

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{3}\)

\(\frac{\pi }{2}\)

\(\frac{{2\pi }}{3}\)

\(\frac{{3\pi }}{4}\)

\(\frac{{5\pi }}{6}\)

y = cot x

?

?

?

?

?

?

?

Bằng cách lấy nhiều điểm M(x; cot x) với x ∈ (0; π) và nối lại ta được đồ thị hàm số y = cot x trên khoảng (0; π).

c) Bằng cách làm tương tự câu b cho các khoảng khác có độ dài bằng chu kì T = π, ta được đồ thị của hàm số y = cot x như hình dưới đây.

Từ đồ thị ở Hình 1.17, hãy tìm tập giá trị và các khoảng nghịch biến của hàm số y = cotx.

Bài tập đã có 1 trả lời, xem 1 trả lời ... | Chính sách thưởng | Quy chế giải bài tập
Không chấp nhận lời giải copy từ Trợ lý ảo / ChatGPT. Phát hiện 1 câu cũng sẽ bị xóa tài khoản và không được thưởng
Đăng ký tài khoản để nhận Giải thưởng khi trả lời bài tập.
Đăng ký tài khoản để có thể trả lời bài tập này!

Đăng ký qua Facebook hoặc Google:

Hoặc lựa chọn:
Đăng ký bằng email, điện thoại Đăng nhập bằng email, điện thoại
Lazi.vn