Cho hàm số \(y = \frac\) có đồ thị là \(\left( C \right)\). Gọi \(I\) là giao điểm của hai đường tiệm cận của \(\left( C \right)\), \(M\) là một điểm bất kì trên \(\left( C \right)\) và tiếp tuyến của \(\left( C \right)\) tại \(M\) cắt hai tiệm cận tại \(A,\,B\). Biết chu vi tam giác \(IAB\) có giá trị nhỏ nhất bằng \(a + \sqrt b \) với \(a,\,b \in \mathbb{N}\). Giá trị của biểu thức \(a - b + 4\) bằng bao nhiêu?
Cho hàm số \(y = \frac\) có đồ thị là \(\left( C \right)\). Gọi \(I\) là giao điểm của hai đường tiệm cận của \(\left( C \right)\), \(M\) là một điểm bất kì trên \(\left( C \right)\) và tiếp tuyến của \(\left( C \right)\) tại \(M\) cắt hai tiệm cận tại \(A,\,B\). Biết chu vi tam giác \(IAB\) có giá trị nhỏ nhất bằng \(a + \sqrt b \) với \(a,\,b \in \mathbb{N}\). Giá trị của biểu thức \(a - b + 4\) bằng bao nhiêu?